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Sequence a0, a1, . . . , an of real numbers is symmetric if, for all k ,

ak = an−k .

Proposition

Given n, the following binomial coefficient sequence is symmetric(
n

0

)
,

(
n

1

)
, . . . ,

(
n

n

)
.

Proof.
To see this algebraically, note that(

n

n − k

)
=

n!

(n − k)!(n − (n − k))!
=

n!

(n − k)!k!
=

(
n

k

)
.

For a combinatorial proof, let [n] = {1, . . . , n} and define(
[n]

k

)
= {S | S ⊆ [n], #S = k}.

Then f :
([n]
k

)
→
( [n]
n−k
)

where f (S) = [n]− S is a bijection.



Sequence a0, a1, . . . , an is unimodal if there is an index m with

a0 ≤ a1 ≤ . . . ≤ am ≥ am+1 ≥ . . . ≥ an.

Unimodal squences abound in combinatorics, algebra, and
geometry; see the survey articles of Stanley, Brenti, and Brändén.

Proposition

Given n, the following binomial coefficient sequence is unimodal(
n

0

)
,

(
n

1

)
, . . . ,

(
n

n

)
.

Proof.
For an algebraic proof, since the sequence is symmetric it suffices
to prove that

(n
k

)
≤
( n
k+1

)
for k < n/2. This is equivalent to

n!

k!(n − k)!
≤ n!

(k + 1)!(n − k − 1)!
⇐⇒ k + 1 ≤ n − k.

which is iff 2k + 1 ≤ n ⇐⇒ k < n/2.
A combinatorial proof can be given by using a lattice path method
called the Reflection Principle (Sagan).



We will give a combinatorial proof of the previous results using
chain decompositions. Let (P,�) be a finite poset (partially
ordered set). If x , y ∈ P then a saturated x–y chain is

C : x = x0 � x1 � . . .� xm = y

where each � is a cover. We assume P is ranked meaning

1. P has a unique minimum element 0̂,

2. if x ∈ P, the lengths of all saturated 0̂–x chains are equal.

Let rk x be the common chain length and rkP = maxx∈P rk x .

Ex. Consider the Boolean algebra Bn of all subsets S ⊆ [n] ordered
by inclusion. Then Bn is ranked with rkS = #S and rkBn = n.

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

B3 =

{3}

{1, 3}

{1, 2, 3} C : {3}� {1, 3}� {1, 2, 3}



Let rk(P) be the number of elements at rank k in P with rkP = n.
P is rank symmetric/unimodal if the sequence r0(P), . . . , rn(P) is.
The center of a saturated x–y chain in a ranked poset P is

cenC =
rk x + rk y

2
.

A chain decomposition (CD) of P is a partition of P into disjoint,
saturated chains P = ]iCi . A symmetric chain decomposition
(SCD) is a CD with cenCi = n/2 for all i .

Theorem
If P has a SCD then it is rank symmetric and rank unimodal.

Ex. r0(B3), . . . , r3(B3) = 1, 3, 3, 1 symmetric and unimodal.

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

{3}

{1, 3}

{1, 2, 3}
cenC = 1+3

2 = 2.

∅

{1}

{1, 2}

{1, 2, 3} C1 : ∅� {1}� {1, 2}� {1, 2, 3}

{2}

{2, 3} C2 : {2}� {2, 3}

{3}

{1, 3}

C3 : {3}� {1, 3}



How do we find an SCD of Bn? Associate with each S ⊆ [n] a
binary word w = wS = w1 . . .wn where

wi =

{
1 if i ∈ S ,
0 if i 6∈ S .

Form the Greene-Kleitman core of w , GK(w), by pairing any
wi = 0 and wi+1 = 1, then pairing any 0 and 1 separated only by
already paired elements, etc. Any unpaired wj is called free and
the free elements of w must be a sequence of ones followed by a
sequence of zeros. Given core κ, form a chain Cκ by starting with
the word which is zero outside κ and then turning the free zeros to
ones from left to right.

Theorem (Greene-Kleitman)

The Cκ as κ varies over all possible cores form an SCD of Bn.

Ex. If S = {1, 5, 7, 8} ⊂ [9] then w = wS = 100010110.

κ = GK(w) = ∗ ∗ 0̂0̂10̂11 ∗ .
Cκ : 000010110 � 100010110 � 110010110 � 110010111.



The Sperner property. An antichain in a poset P is a set A of
elements which are pairwise incomparable. If P is ranked, then the
elements at a given rank are an antichain. So if a(P) is the size of
a largest antichain of P then

a(P) ≥ max
k

rk(P). (1)

It is possible for this inequality to be strict.

a b c

d e f

Ex.

a(P) = 4 because of A = {b, c , d , e}.

The maximum rank size is 3.

Call P Sperner if (1) is an equality.

Theorem
If P has and SCD then it is Sperner.

There is a more general notion of strongly Sperner where one
looks at subposets of P whose longest chain has length ` for all
possible `. The previous theoren still holds for strongly Sperner.



Distributive lattices. A lattice, L, is a poset such that every
x , y ∈ L have a greatest lower bound (meet), x ∧ y , and a least
upper bound (join), x ∨ y . Call L distributive if for all x , y , z ∈ L

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

A (lower order) ideal of a poset P is I ⊆ P such that

y ∈ I and x � y =⇒ x ∈ I .

a b

c d
P =

{a, b, d} is an ideal

a b

d

{b, c , d} is not an idealb

c d

For P a finite poset, let L(P) be all ideals of P ordered by inclusion.

Theorem (Fundamental Thm. of Finite Distributive Lattices)

P a finite poset implies L(P) is a distributive lattice. And any finite
distributive lattice is isomorphic to L(P) for some poset P.

Open Problem: Characterize distributive lattices having SCDs.

Ex. Bn is a lattice with S ∧ T = S ∩ T and S ∨ T = S ∪ T . Also,
Bn is distributive since S ∩ (T ∪ U) = (S ∩ T ) ∪ (S ∩ U). If An is
an n-element antichain then Bn

∼= L(An).
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